Math 115
Fall 2018
Lecture 6

$$
\begin{gathered}
? a^{2}+b^{2}=c^{2} ? \\
y=m x+b \cdot b=r t
\end{gathered}
$$

Feb 19-8:47 AM

Linear inequalities:

$$
\begin{aligned}
& 3 x-2 \leq 10 \quad, \quad-2 x+7 \geq-17, \quad 2(x-3)+7<x-7 \\
& -4(2 x+3)-8>3(x+4)+2, \ldots
\end{aligned}
$$

we do approach these like solving linear equations except whenever we multiply or divide by a negative number, we must reverse the in equality. Solve $\left.\left.\begin{array}{c}3 x-2 \leq 10 \\ 3 x \leq 10+2\end{array} \longrightarrow \begin{array}{l}3 x \leq 12 \\ \frac{3}{3} x \leq \frac{12}{3}\end{array} \xrightarrow\left[\begin{array}{l}x \leq 4\end{array}\right\}\right]{\text { There are }} \begin{array}{l}3 \text {-ways to } \\ \text { write this. }\end{array}\right]$

Solve

$$
\begin{aligned}
& \text { live } \\
& \begin{array}{l}
-2 x+7 \geq-17 \\
-2 x \geq-17-7 \\
-2 x \geq-24
\end{array} \\
& x \leq 12
\end{aligned}
$$

. Set-builder notation

- Graph
- Interval notation

Solve

$$
2(x-3)+10<4 x+12
$$

Distribute ε_{1} like terms

$$
\rightarrow-2 x<8
$$

$$
\begin{aligned}
& 2 x-6+10 \\
&<4 x+12 \\
& 2 x+4
\end{aligned}
$$

Variable on the left, Numbers on the right Divide by -2

$$
\left\{\begin{array}{l}
\frac{-2}{-2} x>\frac{8}{-2} \\
x>-4
\end{array}\right.
$$

$$
2 x-4 x<12-4-
$$ Graph

Solve \&' graph

$$
\begin{gather*}
7(x+2)+6 \leq 3 x+40 \\
7 x+14+6 \leq 3 x+40 \\
7 x+20 \leq 3 x+40 \\
7 x-3 x \leq 40-20
\end{gather*} \quad \begin{aligned}
& 4 x \leq 20 \\
& \text { Divide by } 4 \\
& \frac{4}{4} x \leq \frac{20}{4} \\
& x \leq 5
\end{aligned}
$$

Oct 30-6:17 AM

12 more than -3 times Some number
is at least \geq
28 less than twice the number.
find all such numbers, graph the solution.
Let x be such number,

$$
\begin{gathered}
x \text { be such number, } \\
-3 x+12 \geq 2 x-28 \\
-3 x-2 x \geq-28-12 \\
-5 x \leq-40 \\
\frac{-5}{-5} x \leq-\frac{40}{-5}
\end{gathered} \quad 8
$$

3 times the difference of 7 and twice some number is at most 19 less than 4 times The number find all such numbers. Graph The Solution. Let x be such number at most \leq $3(7-2 x) \leq 4 x-19$

Oct 30-6:28 AM

Solve
Compounded-Iniequality

$$
-2 \leq x+4<12
$$

Isolate variable in

$$
-2-4 \leq x+4-4<12-4
$$

Solve E: Graph

$$
\begin{aligned}
3<4 x-1 & \leq 15 \\
3+1 & <4 x-1+1 \leq 15+1 \\
4 & <4 x \leq 16 \\
\frac{4}{4} & <\frac{4}{4} x \leq \frac{16}{4}
\end{aligned} \quad-1<x \leq 4
$$

Solve $\dot{\text { E G }}$ graph

$$
\begin{aligned}
& -3<-2 x-3<17 \\
& -3+3<-2 x-3+3<17+3 \\
& 0<-2 x<20 \\
& \text { Divide by -2 } \\
& \left.\begin{array}{ll}
0 \\
-2 \\
0 & -2 \\
-2
\end{array} x\right\rangle \frac{20}{-2}
\end{aligned}
$$

Solve and graph

$$
\begin{aligned}
& -8 \leq 4(1-x)+2 x<12 \\
& -8 \leq 4-4 x+2 x<12 \\
& -8 \leq \underset{p^{-}-2}{-}<12 \\
& -8 \leq-2 x+4<12 \\
& -8-4 \leq-2 x+4-4<12-4 \\
& -12 \leq-2 x \Delta^{8} \\
& \rightarrow \text { Divide by }-2 \\
& -4<x \leq 6
\end{aligned}
$$

You have \$100
You rent a car for \$25/day, and $8 \$$ permile.
How far can you drive this rental car for 2 days?

Total cost \leq Your budget

$$
84=\$.08
$$

$$
\left.\begin{array}{c}
2(25)+.08 M \leq 100 \\
50+.08 M \leq 100 \\
.08 M \leq 100-50
\end{array}\right\} \begin{aligned}
& M \leq \frac{50}{.08} \\
& M \leq 625
\end{aligned}
$$

Bop A checking: $\$ 10 /$ month plus $2 \$$ per check
wells Fargo checking: $\$ 5 /$ month plus $4 \$$ per check
find the number of checks per month that makes BorA a better option.

$$
\begin{aligned}
& \begin{array}{l}
\text { \# of } \\
\text { checks }
\end{array} \frac{\text { BorA }}{10+.02 C}<<5+\text { wells fargo } \\
& .02 C-.04 C
\end{aligned} \underbrace{\text { \#check }}
$$

Oct 30-7:06 AM

The perimeter of a triangle exceeds 45 ft . Two sides are equal.
The third side is 7 ft shorter than the sum of equal sides. find all possible values for equal Sides.

$$
\left.\begin{array}{c}
P=a+b+c \\
P>45 \\
x+2 x-7+x>45 \\
4 x>52 \quad x>\frac{52}{4}
\end{array}\right)
$$

(1) find the ratio of .42 to 3.5 in reduced fraction.

$$
\frac{.42}{3.5}=\frac{.42(100)}{3.5(100)}=\frac{42}{350}=\frac{x \cdot 6}{x \cdot 50}=\frac{x \cdot 3}{x \cdot 25}=\frac{3}{25}
$$

(2) True proportion or not: $\frac{3.6}{5} \stackrel{?}{=} \frac{18}{25}$

$$
\begin{aligned}
3.6(25) & \stackrel{?}{=} 5(18) \\
90 & \stackrel{?}{=} 90 \quad \text { True proportion }
\end{aligned}
$$

(3) Solve: $\frac{2.25}{8}=\frac{-9}{x} \quad 2.25 x=8(-9)$
\downarrow

$$
{ }^{d}\{-32\}
$$

$$
x=\frac{-72}{2.25} \quad x=-32
$$

A 5.5 feet tall person has a shadow that is 7.5 feet long.

At the same time, At tall tree has a shadow of 84 ft long.
How tall is the tree, Rounded to a whole \#?

$$
\begin{aligned}
& \frac{5.5}{7.5}=\frac{x}{84} \\
& 7.5 x=84(5.5) \\
& x=\frac{84(5.5)}{7.5} \\
& x=61.6 \mathrm{ft} \text { tall }
\end{aligned}
$$

30% of 148 is what?

$$
\begin{gathered}
\frac{30}{100} \cdot 148=x \\
\frac{3}{10} \cdot 148=x \\
.3(148)=x \\
x=44.4 \\
\underbrace{30}_{30 \%} \text { of } 148 \text { is } 44.4
\end{gathered}
$$

$$
\frac{P}{100}=\frac{\text { Part }}{\text { whole }}
$$

$$
\frac{30}{100}=\frac{x}{148}
$$

$$
100 x=30(148)
$$

$$
x=\frac{30(148)}{100} \quad x=44.4
$$

45\%. of what number is 95.4?

$$
\begin{array}{ll}
.45 \cdot x=95.4 & \frac{P}{100}=\frac{\text { Part }}{\text { whole }} \\
x=\frac{95.4}{.45} & \frac{45}{100}=\frac{95.4}{x} \\
x=212 & 45 x=100(95.4) \\
4=1 &
\end{array}
$$

What percent of 400 is 50?

$$
\begin{array}{c|c}
\frac{P}{100} \cdot 400 \\
4 p=50 \\
P=12.5
\end{array} \left\lvert\, \begin{aligned}
& \frac{P}{100}=\frac{\text { Part }}{\text { whole }} \\
& \frac{P}{100}=\frac{50}{400} \\
& P=12.5
\end{aligned}\right.
$$

12.5% of 400 is 50 .

What percent is 19 out of 40?

$$
\begin{aligned}
\frac{p}{100} & =\frac{19}{40} \\
40 p & =100(19) \\
P & =\frac{1900}{40} \quad P=47.5
\end{aligned}
$$

$$
A \text { of } B
$$

19 out of 40 is 47.5%

FACT: The sum of all three angles in any triangle is 180°.

$$
A+B+C=180
$$

In triangle $A B C$,
 angles A and B are equal. Angle C is 20° less than the sum of angles A and B. find all three angles

$$
\begin{array}{ll}
A \rightarrow x & \text { FACT: } \\
B \rightarrow x & A+B+C=180^{\circ} \\
C \rightarrow 2 x-20 & \frac{y}{x}+x+2 x-20=180 \\
C \rightarrow 20 \\
50^{\circ}, 50^{\circ}, \text { and } 80^{\circ} & 4 x=200 \quad x=50
\end{array}
$$

Oct 30-8:05 AM

In triangle $A B C$, angle B is twice angle A, and angle C is 60° more than angle A.
find all three angles.

$$
\begin{aligned}
& A \rightarrow x \text { fact } A+B+C=180 \\
& B \rightarrow 2 x \\
& C \rightarrow x+60 \\
& x+2 x+x+60=180 \\
& 4 x=120 \\
& x=30
\end{aligned}
$$

Solve for w : $P=2 L+2 w$

$$
P-2 L=2 W \quad \frac{P-2 L}{2}=W
$$

Solve for $\pi: C=\pi d$

$$
\frac{c}{d}=\pi
$$

Solve for $y: \underbrace{4 x}_{\underbrace{}}-5 y=10 \quad \rightarrow y=m x+b$

$$
\begin{aligned}
-5 & =-4 x+10 \\
y & =\frac{-4}{-5} x+\frac{10}{-5}
\end{aligned} \quad \begin{aligned}
& y=\frac{4}{5} x-2 \\
& \text { Slope- Int form }
\end{aligned}
$$

Oct 30-8:17 AM

Solve $\dot{\xi}_{1}$ graph

$$
\left.\begin{array}{l}
-5 \leq-2 x+7<17 \\
-5-7 \leq-2 x+7-7\langle 17-7 \\
-12 \leq-2 x<10 \\
\frac{-12}{-2} \geq \frac{-2}{-2} x>\frac{10}{-2}
\end{array}\right\}-5
$$

Work on SG 5 \& WP 4.

